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Abstract

Prenatal or early postnatal exposure to several agents displaying hormonal action causes persistent quantitative
and qualitative changes in hormone receptors in various cell-types. Exposure must occur during the windows of
susceptibility, which occurs at specific times for each cell-type and hormone receptor. These alterations, that persist
through life, are induced by the mechanism of epigenetic imprinting (cell programming). Studies performed in our
Labs and elsewhere found that not only hormones or agents displaying hormone action, but also those not
displaying this activity, may induce the mechanism of imprinting; among them, lead and arsenic.

Keywords: Prenatal exposures; Lead; Arsenic; Dioxins; Epigenomic
imprinting

Background and Methodology
The present mini-review describes the delayed effects of prenatal

exposure to the most conspicuous environmental agents reported to
increase several diseases risk later in life. The chosen agents are
examples of a wide mechanism involving numerous agents, to which
physicians and other health professionals should pay attention.
Examples of less known food pollutants or drugs are also presented.

Selected agents were chosen based on the best known mechanistic
and toxicological characteristics and also on most clinically relevant
adverse effects on human health. Less relevant effects were excluded.

Searches were performed through Pubmed/Medline, ISI, and other
sources, without date restrictions. References were selected
considering the finding first report, and the most detailed description.

Overview of Prenatal Exposure and the Mechanisms of
Epigenomic Imprinting

Prenatal or early postnatal exposure to several agents displaying
hormonal action causes persistent quantitative and qualitative changes
in hormone receptors in various cell-types [1]. Exposure must occur
during the windows of susceptibility, which occurs at specific times for
each cell-type and hormone receptor. These alterations, that persist
through life, are induced by the mechanism of epigenetic imprinting
(cell programming) [2,3]. Studies performed in our Labs [2-5] and
elsewhere found that not only hormones or agents displaying
hormone action, but also those not displaying this activity, may induce
the mechanism of imprinting; among them, lead and arsenic.
Imprinting-inducing agents may be found among environmental
pollutants, pharmaceuticals, drugs of abuse, food additives and
anthropogenic or natural compounds present in food [4-6]. It was
proposed that changes induced by the mechanism of imprinting are
the root for the development of various diseases and neurobehavioral

changes later in life [5,6]. For humans, the first evidence that prenatal
exposure to a pharmaceutical agent (the synthetic estrogen
diethylstilbestrol) induces imprinting emerged from clear cell
cervicovaginal adenocarcinoma development in young women whose
mothers received treatment with diethylstilbestrol during pregnancy
[7]. Prenatal exposure to the same agent induced the development of
similar tumors in experimental animals [8], induced an increase in
uterine estrogen receptors [1] and caused a great potentiation of a
response to estrogen in a uterine cell-type [9] at older ages.

Knowledge of the etiology of the different diseases aims to the
development of protective measures to decrease their incidence and to
find new therapeutic approaches. Genomic characterization is
important to analyze the risk for various pathologies, such as cancer,
autoimmune diseases, neurodegenerative pathologies. However,
somatic cells genome may be permanently altered by epigenetic
changes through methylation and demetylation processes thus
modifying the susceptibility to develop these diseases. For instance,
methylation changes were reported in brain of patients affected with
various Parkinson [10], Alzheimer [11] and Huntington [12] diseases
and probably multiple sclerosis [13,14]. Several conditions during
gestation may modulate brain development, such as maternal diet,
stress and diseases (diabetes, hypertension), or maternal treatment
with pharmaceuticals. The above epigenetic factors may affect brain
cell programming and they may condition susceptibility or resistance
for the development of various neurodegenerative diseases [15].

The best known imprinters from the environmental pollutants are
lead, arsenic, cadmium, benzopyrene and various dioxins, furans,
polychlorinated biphenyls and pesticides (DDT, DDE, methoxychlor,
chlordecone, parathion, malathion, paraquat, cypermethrin and
cyhalothrin). Among drugs, diethylstilbestrol, anti-epileptic drugs, and
neuroleptic agents binding barbiturate or benzodiazepine receptors.
Drugs of abuse such as cocaine, opiates, ketamine, toluene,
tetrahydrocannabinol, ethanol and tobacco smoking. Food additives:
nitrites, caffeine, aspartame, etc. Other agents found in food include
bisphenol-A, nonylphenol, phthalates, acrylamide and steroids used as
farm animal growth promoters. High prenatal lipid feeding induces
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cholesterol homeostatic memory [16] and alters blood estrogen levels
during adulthood, which is a risk factor for breast cancer [17].
Therefore dietary factors in early life determine the prevalence of
various diseases in adulthood.

Below we describe examples of some of the delayed adverse effects
of early exposure to the most known imprinters: lead, arsenic, dioxins,
antiepileptic drugs and bisphenol-A.

Prenatal exposure to lead
In prepubertal rats, prenatal exposure to lead potentiates two non-

genomic responses to estrogen, while in the absence of prenatal
exposure, lead inhibits these responses [4]. This finding led us to
propose that epigenetic imprinting is a mechanism that developed
some time in the evolution and allowed species survival under
unfavorable environmental conditions since it provided protection
neutralizing adverse effects of chronic exposure to lead and perhaps
other agents [4,5].

In addition to early developmental lead exposure which contributes
to fertility inhibition in humans and experimental animals [18], the
most relevant effects of early lead exposure are those affecting central
nervous system. Several neurological and neurobehavioral changes
attributed to lead exposure were reported in countries with high lead
pollution levels [19-21]. It causes learning impairment, lower IQ
scores, increased school failure [22,23]. A deficit in the IQ scores was
detected in children with lead blood levels of 9 µg/dL [21]; IQ declined
by 7.4 points as lifetime average blood lead concentrations increased
from 1 to 10 µg/dL [24]. Blood lead levels from 5 to 9 μg/dL increased
in the percentage of students requiring special education [25].
Perinatal or infant human lead exposure causes the development of a
hyperactive and aggressive behavior [19]; lead content in tibia at the
age of 12 years, was associated to increased risk for antisocial and
delinquent behavior [26]. Data on year lead amounts used in different
countries revealed an association with crime indexes. Despite
divergent international crime trends, regression R2 is near its peak in
each nation (in USA, Australia, France, Italy, West Germany, Britain,
New Zealand, Canada and Finland) with a lag of 19 years [27].
Following prenatal exposure to lead, a permanent increase in the
affinity of δ-opioid receptors [28] was reported in the rat brain. This
finding lead us to hypothesize that early exposure to lead may facilitate
addiction to drugs of abuse (opiates and stimulants) in countries with
high lead pollution [2]. This hypothesis was confirmed in
experimental animals by studies of other authors [29-33].

Prenatal exposure to arsenic
Arsenic prenatal exposure affects respiratory functions later in life.

Drinking water in the Chilean city of Antofagasta had very high
arsenic levels between 1958 and 1970 (around 0.8 mg/L). Antofagasta
mortality rates in the period 1989-2000 were compared with the rest of
Chile, focusing on subjects born during or just before the peak
exposure period and who were 30-49 years old at the time of death
(prenatally exposed). They were compared to the cohort born before
the high-exposure period (1950-1957) and exposed in childhood later
but not prenatally. Standard mortality ratio for bronchiectasis in
prenatally exposed population was four times higher than in non
prenatally exposed [34].

Prenatal exposure to polychlorinated biphenyl/dioxins
Polychlorinated biphenyl/dioxin prenatal exposure imprints

changes in the immune system, central nervous system and mainly
male reproductive system in humans. It is associated with total
number of T cells and the number of CD8+ (cytotoxic), TcRαβ+, and
TcRγδ+ T cells increase in infants [35], and immune depression that
persists through childhood, in prenatally exposed children [36]. A
decrease in lung function was also associated with perinatal exposure
to background levels of dioxins [37]. Prenatal exposure to
polychlorinated biphenyls and dibenzofuranes determine, at young
adult age, persistent alterations in sperm quality and inhibits
spermatozoid capacity to penetrate hamster oocytes; therefore, it may
cause male infertility [38]. Prenatal exposure to dioxins, furans or
polychlorinated biphenyls was reported to determine feminization of
7-8 year old male children gender-related play behavior [39]. In
experimental animals, it was shown that prenatal exposure to 2,3,7,8-
tetrachlorodibenzo-p-dioxin also determines demasculinization and
feminization of sex behavior in male rats [40,41], which was not
associated with alterations in estrogen receptor binding or sexually
differentiated brain nuclei volumes [41]. Permanent morphologic and
behavior male demasculinization, feminization, and decrease in
fertility were also reported in rats and hamsters following prenatal
exposure to dioxin [42].

Examples of prenatal exposure to drugs or food pollutants
Prenatal exposure to some antiepileptic drugs increases the risk of

behavioral problems in preschool children [43]. Bisphenol-A prenatal
or neonatal exposure of experimental animals was associated to
advancement of puberty and affected sexual dimorphic hypothalamic
areas by increasing oxytocin immunoreactive neurons [44],
development of several ovary and uterine pathologies [45] and early
adipogenesis [46].

Concluding Remarks
The chosen selected examples of pollutants and drugs to which

human population is exposed should alert countries governments to
endorse stricter standards and tighten legislation to protect future
generations from diseases that may develop following prenatal or early
infant exposures. While imprinting may be a positive mechanism to
preserve species through evolution, prenatal exposure to pollutants or
drugs in human population clearly increase the risk for several
diseases. We also alert scientific communities on probable effects of
many additional agents that had not been yet investigated for its
potential epigenetic imprinting.
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